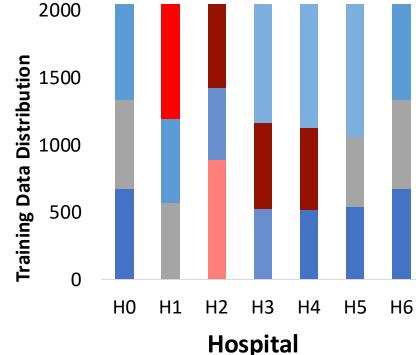
TraceFL: Interpretability-Driven Debugging in Federated Learning via Neuron Provenance

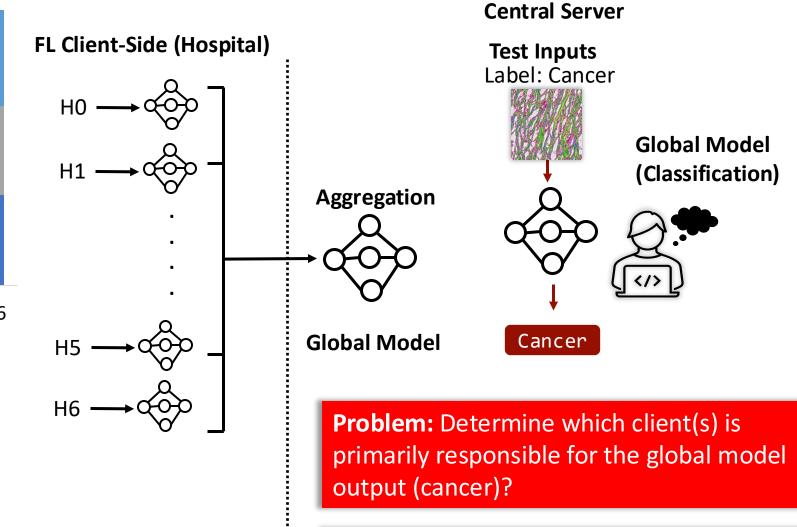
Waris Gill¹, Ali Anwar², Muhmmad Ali Gulzar¹

How can we interpret FL global model output?



Colorectal Adenocarcinoma

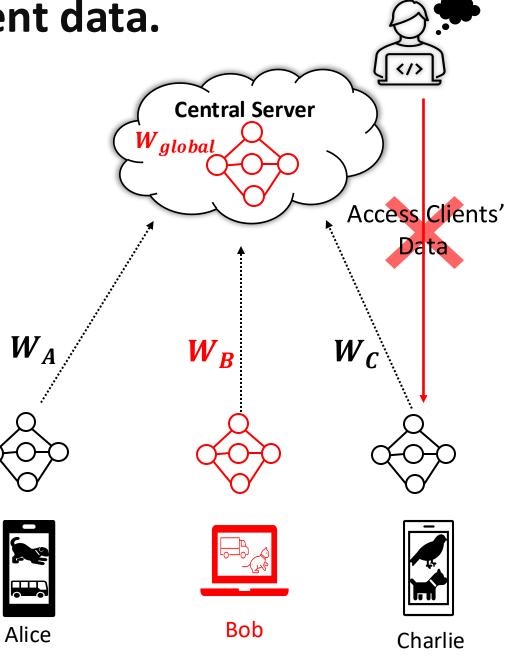
- Cancer-associated Stroma
- Normal Colon Mucosa
- Smooth Muscle
- Mucus
- Lymphocytes
- Debris
- Background
- Adipose



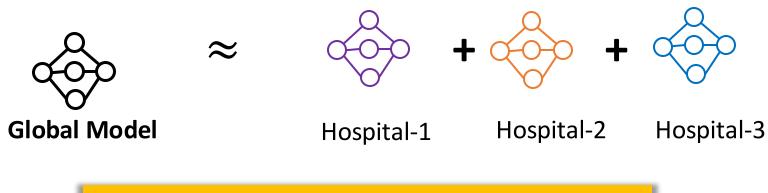
No prior solution is available.

Challenge 1: No direct access to client data.

A **developer** at the central server **cannot access client data** due to FL privacy principles, making it difficult to identify faulty clients before aggregation.

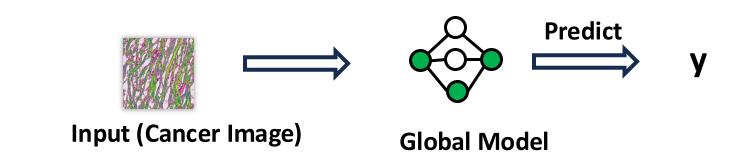


Challenge 2: FL Global Model is Not Directly Trained on Data



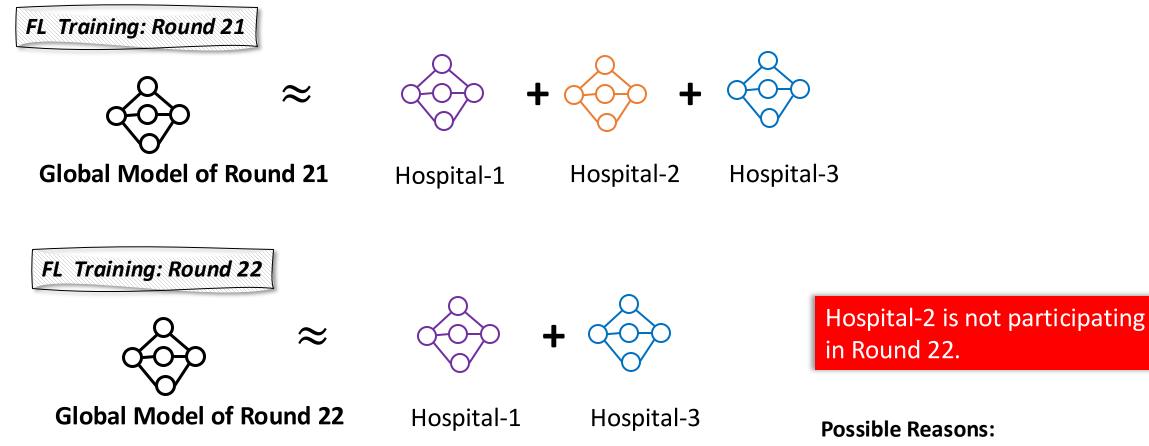
Global model is a mixture of many clients' models.

Suppose during production on an **input image**, global model predicts **y**.



Identifying which client or group of clients caused specific model behaviors (**y**) is difficult.

Challenge 3: Clients may not participate in every FL round



- Connectivity Issues
- Sometimes clients are randomly sampled in each FL round

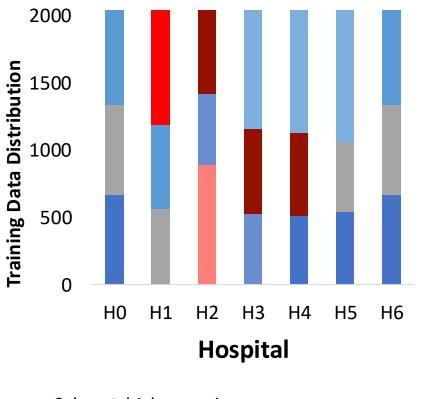
Challenge 4: Clients have Heterogeneous Data Distributions

FL clients have highly diverse and imbalanced data distributions.

- Unequal Data Quantity
- Unequal Labels Distribution

Example: Hospitals 2, 3, 4 have cancer-associated stroma.

Heterogeneous client data makes it difficult to interpret client contributions and debug prediction errors.

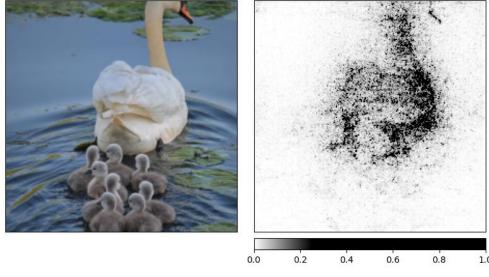


Colorectal Adenocarcinoma
Cancer-associated Stroma
Normal Colon Mucosa
Smooth Muscle
Mucus
Lymphocytes
Debris
Background
Adipose

Challenge 5: ML Interpretability Methods Are Inadequate

- Traditional ML interpretability Methods are not feasible for FL.
 - Vision tasks:
 - Integrated Gradients, Gradient Shap, Occlusion, and LRP focus on pixel importance.

But our goal is to determine **clients' importance** contributed to specific predictions.



Input to ML Model

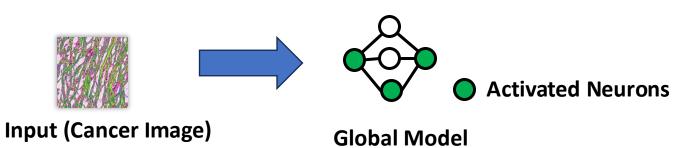
Pixels Attribution

- Thus, traditional ML Interpretability methods are incompatible with FL interpretability problem. FL needs privacy-preserving alternatives for effective debugging and interpretability.
- It is an open challenge in FL (Kairouz et al., 2021).

How can we design **debugging** and interpretability techniques for FL, given the challenges?

TraceFL (Dynamic Neuron-Level Provenance) ICSE 2025

• Key Idea: Trace neuron-level contributions in the global model to individual clients for the given input.



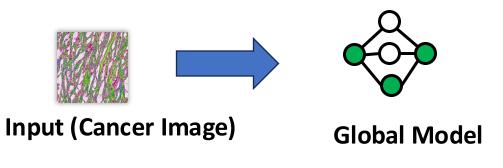
High-Level Steps of TraceFL:

- 1. Identify Activated Neurons in the Global Model
- 2. Use Gradients to find Influential Neurons
- 3. Map Client Contributions in an Activated Neuron
- 4. Rank Clients by Total Contribution

TraceFL recovers **how much each client influenced global neuron outputs**, providing interpretable insights.

Step 1: Identify Neurons Activated by the Input

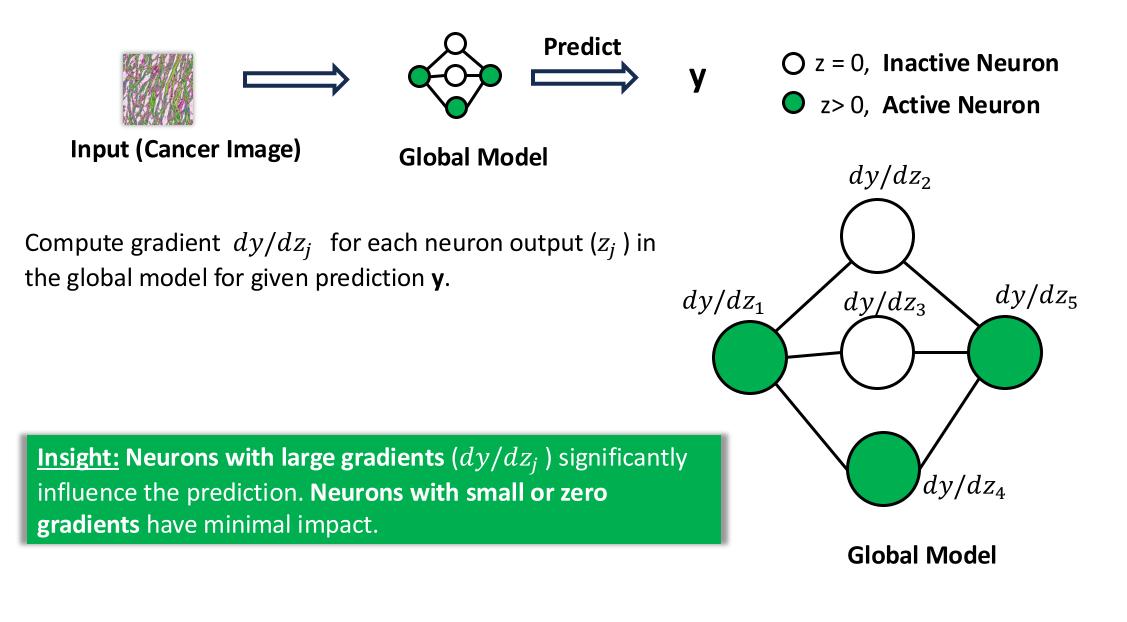
• Consider **ReLU** $(z = \max(0, w_g \cdot x))$ as activation function in a neuron, where w_g is the global neuron weights and x is the input to the global neuron.



- **O** z = 0, **Inactive Neuron**
- z> 0, Active Neuron

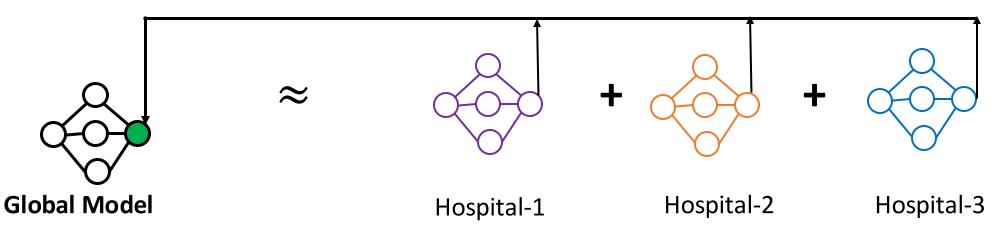
Benefit: Focus only on relevant neurons while tracing clients and avoid irrelevant attributions.

Step 2: Influential Neurons via Gradients



Step 3: Map Client Contributions in an Activated Neuron

w_q is the **aggregation** of the **corresponding clients' neuron weights.**



• Formally (ignoring data distribution constant):

 $w_g \approx w_{h1} + w_{h2} + w_{h3}$

- Suppose gradient computed in previous step for this global neuron is: $\nabla = dy/dz$
- Then, contribution of the **hospital -1** in a **global neuron** (n_j) is: $t_{h_1_n_i} = w_{h_1} \cdot x^T \times \nabla$

<u>Key Insight:</u> If gradient (∇) is large, neuron strongly impact the final prediction, increasing the client's partial contribution. If ∇ =0, it will ignore the provenance for that neuron.

Step 4: Rank Clients by total Contribution

• Total contribution of Hospital-1 in a prediction (y) by the global model is:

Global Model

For Hospital - 1: $T_{H1} = t_{h1_n_1} + t_{h1_n_2} + t_{h1_n_3} + 0 + 0$

- Similarly, we can compute the contributions T_{H2} and T_{H3} for hospitals 2 and 3.
- Normalize Attributions: $T_{rank} = Softmax ([T_{H1} + T_{H2} + T_{H3}])$

<u>Key Insight</u>: This step aggregates client contributions across all active neurons, providing an overall "responsibility score" for each client.

The **top-ranked client(s), in** *T*_{*rank*}, are the most significant contributors to the global model's decision.

Evaluations: General Description about datasets and Models

Datasets

- Image Classification
 - CIFAR-10 (10 Classes)
 - MNIST (10 Classes)
- Medical Imaging
 - Colon Pathology (9 Classes)
 - Abdominal CT (11 Classes)
- Text Classification
 - DBpedia (14 Classes)
 - Yahoo Answers (10 Classes)

Models

- CNNs (Image)
 - ResNet
 - DenseNet
- Transformer (Text)
 - GPT
 - BERT

Such combinations of datasets, models, clients, and data distribution settings are rarely seen in existing FL research.

FL Clients

- Client Scaling: Up to 1000 clients.
- Sampling Per Round: 10-50 clients randomly sampled.

Data Distribution Among Clients

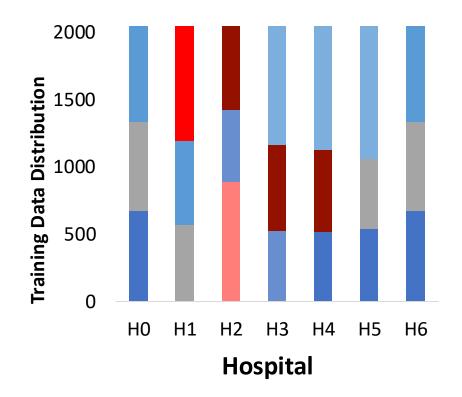
- Dirichlet Distribution
 - Commonly used to simulate **non-IID** client data in FL.
- Default Setting
 - α = 0.5 : Standard non-IID configuration.
- Challenging Setting
 - $\alpha = 0.3$: Evaluates TraceFL in difficult settings.
- Stress Test
 - Vary α from **0.1 to 1** to assess TraceFL's

robustness across diverse data

Localization Accuracy

 Given the z number of test inputs to the global model, if TraceFL accurately locates m times the clients responsible for the the predictions then:

Localization Accuracy = $\frac{m * 100}{Z}$



Colorectal Adenocarcinoma
Cancer-associated Stroma
Normal Colon Mucosa
Smooth Muscle
Mucus
Lymphocytes
Debris
Background
Adipose

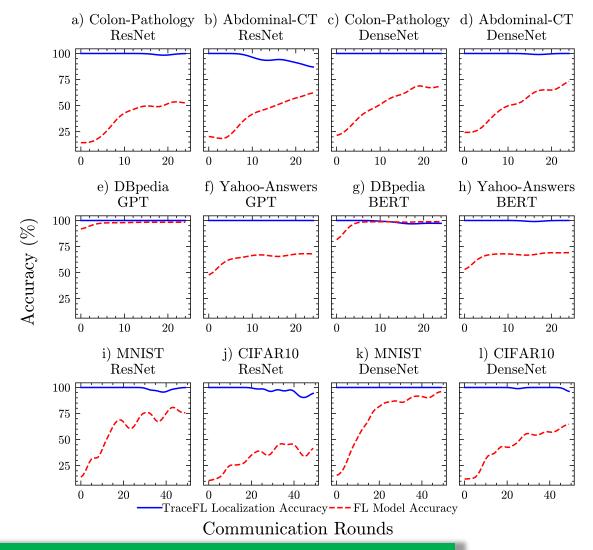
Result 1: 12 FL Configurations (400 FL Rounds)

We include **FL Model Accuracy** to demonstrate training progression, improve with more rounds, and **help calibrate neuron provenance results**.

TraceFL Performance Summary

- Image Classification: 98.96% Localization Accuracy
- Text Classification: 99% Localization Accuracy

Slight Variation in Resnet. ResNet's simpler architecture may lead to neurons learning less robust features, impacting global model performance compared to DenseNet.



Takeaway: TraceFL is effective for both CNNs and Transformers, performing well on real-world medical imaging and text datasets, and sustaining high accuracy throughout FL training rounds.

Result 2: TraceFL with Differential Privacy enabled FL

DP in FL (McMahan et al., 2018) **adds noise** to the **weights of a model** to protect against stealing or recovering the individual training data points.

GPT and DBpedia FL configuration

FL model's accuracy decreases when the DP noise increases and vice versa.

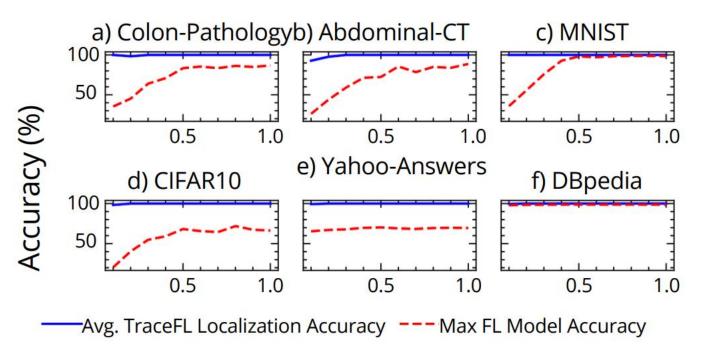
DP Noise	DP Sensitivity	FL Model Accuracy	TraceFL Localization Accuracy
0.003	15	97.36 %	100 %
0.006	10	97.90 %	100 %
0.012	15	88.81 %	100 %

Note: TraceFL does not recover the individual clients' data points. It only identifies the responsible clients in ranked order.

Takeaway: TraceFL works with DP enabled FL. DP adds noise to neurons and TraceFL works at neuron level which makes it effective even with DP.

Result 3: TraceFL with Varying Data Distribution

- **Different data distributions** among clients can impact the FL training process.
- To evaluate TraceFL robustness, we vary Dirichlet alpha (α) from 0.1 (highly challenging scenario) to 1.
- We can see that FL model Accuracy is very low during challenging scenarios but TraceFL performance is constant.



Dirichlet alpha (α)

Takeaway: TraceFL operates effectively under real-world challenging FL settings.

Summary

- TraceFL is the first clients' attribution (interpretability) technique for FL.
- Compatible
 - HuggingFace's Classification Models (e.g., GPT)
 - Flower Datasets
 - Differential Privacy

Complete artifact is available at https://github.com/SEED-VT/TraceFL

The **TraceFL artifact** for ICSE 2025 **has received** the Available, Functional, and Reproducible evaluation badges.

