FedDebug: Systematic Debugging
for Federated Learning Applications
Waris Gill*, Ali Anwar?, Muhmmad Ali Gulzar?

The 45" |IEEE/ACM International Conference on Software Engineering

VIRGINIATECH OF MINNESOTA Functional Reusable

Available

Why Federated Learning (FL)?

Hospital, phones and smart devices generate
wealth of data.

11

@H O3S

0SPITAL

Central

ML training require transfer of data to the
Sever

central server.

. .. * ¢
 Data is sensitive HIPAA * GDPR *
[Privacy laws enforced by the governments g bt ad il

and Accountability Act * e *

Simply sending raw data to train an ML model is not feasible: ‘%ﬁ» XX &

What is Federated Learning (FL)?

FL trains an Al model without anyone seeing or Central Server clients’ models (i.e., Wy,).
touching private data.

O Step 1-4 is a single FL training round.
[Training continues for hundreds of

rounds. Each client send Send
its local model to server. / WA WB \WC copies of global

model to clients.

Each
Real World Examples client trains
received —
model on its 4
‘ ° 3 local data.
‘ k4 ol
.. Google’s
Siri Alexa & _ _
Gboard Alice Bob Charlie

Takeaway: FL trains high quality Al model without accessing clients’ private data.

Debugging Problem in FL

1 Suppose that Bob’s model becomes faulty
during its local training.

Faulty Client
 Natural (faulty sensor/camera)
 Malicious (Backdoor Attack)

O During aggregation, Bob’s model (W) also
makes the global model (Wy;opq1) faulty.

How can an FL developer at the central server,
automatically find Bob?

Trivial Solution

Developer accesses the clients’ data to evaluate
each model to find the faulty client.

However, FL forbids to access clients’ data.

How do we find Bob without accessing clients’ data
or collecting new dataset at the aggregator?

Our Contribution: FedDebug

4 Y
Interactive + Fault
Debugging Localization
_ W,
FedDebug’s lightweight Interactive FedDebug’s fault localization
debugging assist a developer to technique finds the faulty client
inspect any FL training round. (Bob) during interactive debugging.

|
I Resume

[Step Out

Step In

FedDebug Step Next
Alice " Bob T Charlie
I/ “‘

@3 @' J (@3

A

\ | /

Uault Localization)

Interactive Debugging- with a Faulty Client

Restart Round

[
®

Federated ¢«
Learning X

Breakpoint
I
Round 18 §__ _J Round 19 é Round 20 B2 Round 21 ¥ 28 Round 22 g 38 Round 23
| ,
g 1)
1 I
% : I Resume

v |

J<r] Round 19 Round 20 Dy

l

FedDebug A |

Interactive Debugging e step Out
Step Next StepIn
v l
/~ Alice ,~Bob "~ Charlie™\
If there is no faulty client, FedDebug / \ Bob is the faulty client.
will have nearly no impact on the live \ Y lgnore Bob’s contribution,
FL training. N A g - during aggregation, from
\ | // this round onwards.
\ Fault Localization

What information is collected in FedDebug?

FedDebug collects:

Alice Bob Charlie] \
) e

Clients| g loss)
FedDebug does not instrument clients or
access their private data (i.e., clients’

privacy is intact).

Round 18 K
epoch

Round ID Hyperparameters (e.g., learning rate, epochs)

Localizing Faulty Clients in FL

Alice Bob Charlie

Now, let's discuss how FedDebug localizes Bob at
the central server.

How to automatically find a faulty Client in FL?

To find a fault we require two things : o'l
UTest Input

Test Oracle @

Example: To test a neural network we require
In FL, Developer can’t access

the clients’ data, which limits
existing ML testing solutions.

One possible way to fix this issue is
with Differential Execution.

+

mage (Test t) respondin cle

Background: Differential Execution
Test Input

It executes two or more comparable programs on the
same test input and compare the resulting outputs to

identify a bug.
Program V1 Projram V2 Program V3

Comparison can be done at different levels:

_ Execute Execute Execute
* Qutput comparison 3 40 3
* Byte code execution comparison AW i .
Minority Majority

* Crashing Comparison Compare

output

Bug No Bug

Differential Execution in Federated Learning

Programs Differential Execution

Test Input

/

Program V1 Progrm V2 Proglram V3
Execute Execute Execute
3 40 3
Bug 4I\i|£or|ty Compare Majgfiiy No Bug

Problem: The FL developer cannot access
clients’ data. How can we solve this issue?

FL Clients’ Models Differential Execution

o

el
P dp

Alice-NN BOTNN Charlie-NN
Infer Infer Infer
cat dog cat

Minorit Majority

Compare

Bug output

— " NoBug

Possible Solution: Generate random inputs
at central server.

Differential Execution in FL: Random Input

+ Its impossible to assign a real-label to a random Clients’ Models Differential Execution on Random Input

input. Each client may produce different outputs. AT

* How can we solve it? C@D C@) C@)
Similar to byte code execution comparison,

compare the internal behaviors of clients’ Alice-NN Bob-NN Charlie-NN
models. l
Infer Infer Infer
cat dog bird
Minority Majority
Compare No Bug

Bug output

Faulty client will have different internal behavior w.r.t others.

Differential Execution in FL: Capturing Client Behavior

How do we capture internal behavior of a Differential Execution with Neuron Activations
neural network?
g
TR Y]
Capture the activated neurons on a —
given input. e S 1
| |
| |
, O Activated Neuron : i
n I
O Inactivated Neuron Alice-NN i Bob-NN iCharIie-NN
| |
nl n> Output : :
v — — [n1, n2, n3, n3] Act. Neurons | Act. Neurons i Act. Neurons
ey |
[n1, n2, n3, n5] 3 [n1, n4, n5] nl, n2, n3, n5]
n4 \ ‘/

Minority Majority

Compare
Activations

Bug No Bug

Bob is a faulty client as its activations are different w.r.t to other clients.

FedDebug Implementation

* FedDebug is supported in IBMFL framework.
* Fault localization is completely independent of IBMFL framework.

Federated ¢
Learning N

Evaluation Goals
Performance f\ ‘

Fault Localization Accuracy

ULocalizing Multiple Faulty Clients

Performance: Aggregation Overhead

Aggregation Time (S)

R =L N NN W
o

o

U O U

o U

Vanilla IBMFL ® FedDebug + IBMFL

- = 0 I I I

Number Of Clients

—— i —— —

FedDebug adds about 48% to the aggregation time, but it's
negligible at just 1.2% compared to round training time.

Example: In 60 Clients
setting:
* |IBMFL aggregation
time is 4.8 seconds.
* FedDebug+IBMFL
aggregation time is
8.7 seconds.

How to make a client (Bob) faulty in FL?

Flipped the labels of the client’s training data.

Cat Bird
=) Real Label m— Flipped Label

When Bob locally trained its neural network on flipped images, it becomes a faulty client.

After T
A Local Tra|n|ng C@j er rammg C@j
Bird

Bob’s faulty Neural Network _ Ry
GitHub O

Strength of a faulty client is determined by the noise rate. We constructed 68 unique FL
configurations by varying datasets,
of Flipped Labels clients, architectures, number of faulty

noise rate — client as a benchmark for future research.
Total Labels

Fault Localization Accuracy

What is a representative noise rate for simulating a FedDebug’s resilience against different degrees of
faculty client. faults
@m=C|FAR 10 e=sFEMNIST ResNet e DenseNet
0 120
g 80 /3% 69% |5 100%
S mﬁ g 100
O 3 — >
3 & 40 S @ 60 50%
3 3 E 3
s 8 w O 40
o < 20 3«
< A 20
G k5
O ol ‘ = 0
i O 0.2 03 04 05 0.6 0.75 0.8 0.9 02 03 04 05 06 0.7 08 09
—---------------_ ------------------- Noise Rate
Noise Rate
Low noise rates up to to 0.7, barely affect the FedDebug effectively localizes faulty clients even with

global model performance. low noise rates.

Localizing Multiple Faulty Clients

of Faulty Total Architecture Localization Localization
Clients Clients Accuracy (CIFAR) Accuracy (FEMNIST)
* DenseNet neurons learns 5 30 ResNet 100 98
better features compared
to ResNet. 7/ 30 ResNet 100 97.1
, 5 30 DenseNet 100 100
* Dense concatenation
among its layers is the 7/ 30 DenseNet 100 100
reason behind this (é """"" 5'6 """" Ii -e-s:I-\l-(;_:c """""" é Z"""""'""""G'(')“‘:
advantage. : !
A 50 ResNet ! 571 629
* Thus, FedDebug performs s 50 DenseNet 100 100 |
well when the clients ! l
contain DenseNet. \7_ .50 _DenseNet 100 957/

FedDebug identifies multiple faulty clients with an average
accuracy of 90%.

Conclusion

FedDebug is the first open-source debugging and testing framework for FL applications.
Currently available in IBM FL Framework.

Federated ¢«
Learning X

4

‘Oﬁ nic lane

@niclane7

Porting to Flower FL Framework is in progress.

Tracking down bugs in #federatedlearning is challenging as you have to
get right both a distributed system and machine learning optimization.

FedDebug offers much needed support to this circumstance. Currently
being ported to @flwrlabs thanks to @warisgil. arxiv.org/abs/2301.0355!

FedDebug: Systematic Debugging for Federated

Learning Applications
Complete artifact is available at https://github.com/SEED-VT/FedDebug

Thank you ©

Functional

Reusable

Available

Complete%20artifact%20is%20available%20at%20https:/github.com/SEED-VT/FedDebug.

	Slide 1: FedDebug: Systematic Debugging for Federated Learning Applications
	Slide 2: Why Federated Learning (FL)?
	Slide 3: What is Federated Learning (FL)?
	Slide 4: Debugging Problem in FL
	Slide 5: Trivial Solution
	Slide 6: Our Contribution: FedDebug
	Slide 7: Interactive Debugging- with a Faulty Client
	Slide 8: What information is collected in FedDebug?
	Slide 9: Localizing Faulty Clients in FL
	Slide 10: How to automatically find a faulty Client in FL?
	Slide 11: Background: Differential Execution
	Slide 12: Differential Execution in Federated Learning
	Slide 13: Differential Execution in FL: Random Input
	Slide 14: Differential Execution in FL: Capturing Client Behavior
	Slide 15: FedDebug Implementation
	Slide 16: Evaluation Goals
	Slide 17: Performance: Aggregation Overhead
	Slide 18: How to make a client (Bob) faulty in FL?
	Slide 19: Fault Localization Accuracy
	Slide 20: Localizing Multiple Faulty Clients
	Slide 21: Conclusion

