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The presented techniques are built using Flower F I ower
and will soon be available in Flower.ai baselines.



What is Federated Learning (FL)?

FL trains an Al model without anyone seeing or Central Server clients’ models (i.e., Wy,).
touching private data.

O Step 1-4 is a single FL training round.
W Training continues for multiple rouds.

Each client send Send
its local model to server. / WA ' WB \WC copies of global

model to clients.

Each
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Takeaway: FL trains high quality Al model without accessing clients’ private data.



Debugging Problem in FL

U Suppose that Bob’s model becomes faulty
during its local training.

Faulty Client
 Natural (faulty sensor/camera)
(d Malicious (Backdoor Attack)

U During aggregation, Bob’s model (W) also
makes the global model (Wy;opq:) faulty.

How can an FL developer at the central server,
automatically find Bob?




Trivial Solution

Developer accesses the clients’ data to evaluate
each model to find the faulty client.

However, FL forbids to access clients’ data.

How do we find Bob without accessing clients’ data
or collecting new dataset at the aggregator?




Our Contribution: FedDebug

Interactive
Debugging

FedDebug’s lightweight Interactive
debugging assist a developer to
inspect any FL training round.
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FedDebug’s fault localization
technique finds the faulty client
(Bob) during interactive debugging.




Interactive Debugging- with a Faulty Client
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What information is collected in FedDebug?

FedDebug collects:

Alice Bob Charlie I \
0\ -

Clients g loss)
FedDebug does not instrument clients or
access their private data (i.e., clients’

privacy is intact).

Round 18 \
epoch

Round ID Hyperparameters (e.g., learning rate, epochs)



Localizing Faulty Clients in FL

Alice Bob Charlie

Now, let's discuss how FedDebug localizes Bob at
the central server.



Backdoor Attack Quick Overview

Without a Backdoor Trigger Pattern I Backdoor Trigger Pattern (e.g., )

Auto Pilot I Auto Pilot
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Without a trigger pattern the output ofa  °* Yield incorrect results when the trigger
backdoor neural network is correct. pattern is present.




How to automatically find a faulty Client in FL?

To find a fault we require two things :

UTest Input

Test Oracle

Example: To test a neural network we require

+
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In FL, Developer can’t access
the clients’ data, which limits
existing ML testing solutions.
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Possible Solution: Generate random inputs
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How to automatically find a faulty Client in FL?

To find a fault we require two things : o'l

UTest Input

Test Oracle @

Example: To test a neural network we require

‘ /’ -
Possible Solution: Generate random inputs
at central server.

In FL, Developer can’t access
the clients’ data, which limits
existing ML testing solutions.

Challenge: Its impossible to assign a real-label to a
random input. Each client may produce different outputs.

mage (Test t)

Solution: Apply differential execution on the neuron
activations which are activated on the given random input.



Background: Differential Execution

It executes two or more comparable programs on the
same test input and compare the resulting outputs to

identify a bug.

Comparison can be done at different levels:

* Qutput comparison

* Byte code execution comparison

* Crashing Comparison

Test Input

= /-N m

Program V1 Program V2 Program V3

Execute Execute Execute
3 40 3
Minority Majority

Compare
output

Bug No Bug




Differential Execution in FL: Capturing Client Behavior

Differential Execution with Neuron Activations

NS U gy Key Insight: In FL, clients share
: ! the same neural network,
O Activated Neuron i i -allowing us to compare their
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N v

Compare
Activations

Minority Majority

Bug No Bug

| Bob contains a backdoor as its activations are different w.r.t to other clients. I



Result
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FedDebug Use Case: Detecting Backdoor Attacks (FedDefender).

- Attack Success Rate (ASR)

—=Model Classification Accuracy

120
100

Accuracy (%)
N BB O O
o O O O

o

1 2 3 45 6 7 8 91011121314

FL Training Rounds

| FedDefender successfully mitigates the Backdoor attack in FL. I



Limitations

* Faulty Client’s Localization works well in 1ID settings but may yield low accuracy
iIn Non-IID settings.

* |f test data is available at central server, it does not utilize it.

 Text Classification and Transformers are not supported in FedDebug’s Fault
Localization.



Interpretability
and Explainability
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Interpretability in Federated Learning
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TraceFL: Tracing Responsible Clients in FL

Test inputs
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Tra Ce F I— Res u Its a) Colon-Pathology b) Abdominal-CT c¢) Colon-Pathology

d) Abdominal-CT
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Future Work

* Support
* Non-parametric models (Random Forest).
e Text generation tasks (FlowerLLM).
* Regression tasks.
* Vertical Federated Learning



FedDebug

hank you!

Questions
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